
Algorithms

Lec#2

Fall 2014

Review of Last Lecture

• Algorithm: is a step-by-step procedure for
solving a problem in a finite amount of time.

• Running time : of an algorithm on a particular
input is the number of primitive operation or
steps executed.

• Experimental studies:
• write a program implementing the algorithm.

• Run the program with inputs of varying size .

• Plot the results.

Review of Last Lecture

• Why it is impractical to do experimental
studies to find T(n)?

– It is necessary to implement the algorithm,
which may be difficult

–Results may not be indicative of the running
time on other inputs not included in the
experiment.

– In order to compare two algorithms, the
same hardware and software environments
must be used.

Asymptotic analysis

Measuring the Efficiency of an algorithm:

Determine its scalability:

• Uses a high-level description of the algorithm
instead of an implementation

• characterizes running time as a function of
the input size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment.

Asymptotic Analysis

Big O

Big Ω

Big Ɵ

Designing Algorithms

• There are many ways to design algorithms.

– Divide and conquer

• Divide the problem into number of sub-problems that
are smaller instances of the same problem.

• Conquer the sub-problems by solving them
recursively.

• Combine the sub-problem solutions to give a solution
to the original problem

Merge Sort

• A sorting algorithm based on divide and
conquer.

• Its worst case running time has lower order of
growth than insertion sort.

• Because we are dealing with subproblems ,we
state each subproblem as sorting a subarray
A[p….r}. Initially, p=1 and r=n, but these values
change as we recurse through subproblems.

Merge Sort

To Sort A[p…r]:

Divide by splitting into two sub-arrays A[p..q] and
A[q+1...r].where q is the halfway point of A[p…r]

Conquer by recursively sorting the two sub-arrays
A[p…q] and A[q+1……r].

Combine by merging the two sorted subarrays
A[p….q] and A[q+1….r] to produce a single sorted
subarray A[p…r]. To accomplish this step, we’ll
deifne a procedure Merge(A,p,q,r)

Merge Sort

Merge Sort

Merging

• The key to Merge Sort is merging two sorted
lists into one, such that if you have two lists X
(x1x2

…xm) and Y(y1y2
…yn) the resulting

list is Z(z1z2
…zm+n)

• Example:

L1 = { 3 8 9 } L2 = { 1 5 7 }

merge(L1, L2) = { 1 3 5 7 8 9 }

Merging (cont.)

3 10 23 54 1 5 25 75X: Y:

Result:

Merging (cont.)

3 10 23 54 5 25 75

1

X: Y:

Result:

Merging (cont.)

10 23 54 5 25 75

1 3

X: Y:

Result:

Merging (cont.)

10 23 54 25 75

1 3 5

X: Y:

Result:

Merging (cont.)

23 54 25 75

1 3 5 10

X: Y:

Result:

Merging (cont.)

54 25 75

1 3 5 10 23

X: Y:

Result:

Merging (cont.)

54 75

1 3 5 10 23 25

X: Y:

Result:

Merging (cont.)

75

1 3 5 10 23 25 54

X: Y:

Result:

Merging (cont.)

1 3 5 10 23 25 54 75

X: Y:

Result:

Divide And Conquer

• Merging a two lists of one element each is the same
as sorting them.

• Merge sort divides up an unsorted list until the
above condition is met and then sorts the divided
parts back together in pairs.

• Specifically this can be done by recursively dividing
the unsorted list in half, merge sorting the right side
then the left side and then merging the right and left
back together.

Merge Sort Algorithm

Given a list L with a length k:

• If k == 1 the list is sorted

• Else:

– Merge Sort the left side (1 thru k/2)

– Merge Sort the right side (k/2+1 thru k)

– Merge the right side with the left side

Merge Sort Example

99 6 86 15 58 35 86 4 0

Merge Sort Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

86 1599 6 58 35 86 4 0

Merge Sort Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

86 1599 6 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

86 1599 6 58 35 86 4 0

99 6 86 15 58 35 86 4 0

4 0

Merge Sort Example

99 6 86 15 58 35 86 0 4

4 0Merge

Merge Sort Example

15 866 99 58 35 0 4 86

99 6 86 15 58 35 86 0 4

Merge

Merge Sort Example

6 15 86 99 0 4 35 58 86

15 866 99 58 35 0 4 86

Merge

Merge Sort Example

0 4 6 15 35 58 86 86 99

6 15 86 99 0 4 35 58 86

Merge

Merge Sort Example

0 4 6 15 35 58 86 86 99

